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STABILITY, PATHS, AND DYNAMIC BENDING

OF A BLUNT BODY OF REVOLUTION

PENETRATING INTO AN ELASTOPLASTIC MEDIUM

UDC 539:374:629.7I. V. Simonov and K. Yu. Osipenko

The deep penetration of a thin body with a blunt nose and rear into a low-strength medium is explored.
The motion of the body is described by a system of autonomous integrodifferential equations using
the physical model of a separated asymmetric flow over the body and the local-interaction method.
An analytical calculation of the Lyapunov stability boundary for straight-line motion is performed for
bodies with a parabolic meridian. The dependences of the dynamic stability of the body on various
parameters are studied numerically. Curved motion paths are constructed in the region of instability,
and the classification of paths proposed in previous studies of the motion of pointed bodies is confirmed.
It is shown that an reverse ejection is possible when a blunt impactor enters a semi-infinite target. It
is established that there is a fundamental possibility of attaining a path close to a specified one and that
there is a weak dependence of motion characteristics with a developed separation on the separation
angle. Examples are given of calculations of the evolution of the lateral load, the transverse force and
moment, and the strength margin of the body using the theory of dynamic bending of a nonuniform
rod.
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Introduction. Direct penetration of a body of revolution has been studied analytically taking into account
cavitation [1–3], and non-one-dimensional motion has been investigated numerically [4]. The deep penetration
phenomenon has been used as the basis in developing various technologies, such as research stations for studying
space objects [5, 6], controlled action on volcanic and seismic activities [7], etc. In this connection, penetration
calculations, body shape optimization, and stability analysis of body motion have gained fundamental importance.

In hydrodynamics, flow separation and motion stability are among fundamental problems. The complex
nature of interaction forces and the cavitation nature of flows even at low velocities hinder investigation of the
non-one-dimensional motion of bodies in high-strength media and make it impossible to solve these problems in
exact formulations [1]. Numerical methods for solving problems in exact formulations are effective in studies of the
initial stage of impact and penetration, but, because of a large number of parameters and determining functions,
the results are of a simulation nature and are unsuitable for finding general regularities. In addition, because of low
measurement accuracy and the instability of dynamic properties of materials, in particular, geological media, the
requirements for modeling accuracy can be reduced. Therefore, it is justified to use approximate approaches based
on a phenomenological description of the interaction of a medium and a body with a corresponding “calibration”
of the model.

In the present study, we consider the physical model of a separated flow over a body based on an analysis of
local interaction [8] (the isolated element method in mathematics). Explicit specification of coefficients as functions
of parameters of the medium using asymptotically exact solutions [9, 10] and results of experiments [11, 12] made it
possible to estimate the coefficients, to perform an asymptotic analysis, and to simplify the system of autonomous
integrodifferential equations of body motion (resolved for derivatives) for which the Cauchy problem is formulated.
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For bodies of a parabolic shape, an analytical calculation of the Lyapunov stability boundary of straight-line motion
is performed (this problem was generally solved in [13]). Numerical studies are made of the dependences of body
motion stability on initial deviations from the normal entry conditions, the “frozen” axial velocity, body shape,
separation angle (a parameter included in the empirical separation criterion), and the position of the center of mass
of the body in comparison with the stability criteria in the small. Curved motion paths are constructed in the
region of instability taking into account deceleration, and the classification of the paths proposed in studies [14] of
the motion of pointed bodies is confirmed. It is shown that the entry of a blunt impactor into a semi-infinite target
can lead to an reverse ejection, as was previously detected in the unpublished experiments of Yu. K. Bivin.

The separation hypothesis is based on observations of body motion in low-strength media: ideal separation
occurs in the midlength section at low velocities; an empirical separation angle is introduced for high velocities and
in the presence of initial stresses. The examined range of velocities is determined by the same order of magnitude
of contributions from hydrodynamic and strength resistances. In this case, there is a deep (far exceeding the body
length) penetration of a high-strength massive thin impactor.

1. Physical Description and Hypotheses. An oblong blunt body of revolution moves inertially in an
unbounded isotropic and homogeneous elastoplastic medium. The length scale in the longitudinal and transverse
directions are the body length L and its maximum radius rmax, respectively. The dimensionless equation of the
meridian is written in the cylindrical coordinate system (R,ϕ, l): R = R(l) = r/rmax, which is rigidly attached to
the body and the local rectangular coordinates x = lc − l, y = R cosϕ, and z = R sinϕ (l is the distance from the
body nose; R0 6 R 6 1; 0 6 l 6 1; R0 is the bluntness radius; and l = lc and R = 0 are the coordinates of the
center of mass). The thin-body conditions

ε = rmax/L� 1, εβ � 1, β = R′ = dR/dl, ln < l < 1 (1)

are satisfied everywhere except in a small neighborhood of the nose 0 6 l 6 ln � 1, which is neglected in the
calculations.

At the initial time t = 0, the velocity v0 of the center of mass of the body and the angular velocity of rotation
Ω0 about this center are specified. We assume that rotation begins in the plane formed by the velocity v0 and the
body axis (yaw and other rotations are absent). Then, the paths of points of the body are two-dimensional if the
dynamic properties of the body possess rotational symmetry.

Let us designate the current translation, angular, and complete velocities and the current velocity normal to
the body surface by v = (vx, vy, 0), Ω = (0, 0,Ω), V = v + Ω× (x, y, z), and Vn = nV = ε δvx, respectively (n is a
unit normal to the surface):

δ = β − a cosϕ, a = −ωx− η, ω = ΩL/(εvx), η = vy/(εvx). (2)

The dimensionless angular velocity ω and the angle of attack η are normalized so that in the asymptotically exact
model being constructed, they can take values O(1) with error O(ε2). The mass of the body m is expressed in terms
of the dimensionless length of a cylinder with equivalent mass and midlength section le and the mean density of the
body ρ1: m = πr2maxLleρ1. The incompressible medium is characterized by the density ρ0, the shear modulus µ, and
the Mises dynamic yield point τd. For plastically compressed (porous) media, it can be assumed that the medium
becomes continuous at a considerable distance from the body with density ρ0 in this state.

According to the results of [9, 10], a plastic zone with a “large” characteristic dimension
√
µ/τd R(l) is

formed near the contour. Intense shear flow and flow separation occur near the contour. At low velocities, viscous
near-wall effects are observed. At moderate velocities (over 1 m/sec for wet clay soil) and high velocities, the
material slides along the impactor walls and agreement between theoretical and experimental results is achieved by
choosing a plastic friction law [11, 12]. According to the model of [13], separation arises when the slope of the body
surface element to the flow velocity vector at infinity reaches the critical value [12]

δ∗ ≡ δ − β∗(σ0
ij , V ) = 0. (3)

At subsonic velocities, while the inertial motion of the medium is insignificant, the separation is ideal and occurs in
the midlength section near the rear boundary of the body (β∗ = 0). With increase in the velocity, the separation
angle increases, and with increase in the initial compressing stresses σ0

ij in the medium, it decreases. A simple
procedure for determining β∗ in the experiment was proposed in [15].

We shall distinguish the wetting S+ (δ∗ > 0) and the separation zone S− (δ∗ < 0), in which the stresses are
equal to zero; S = S+ + S− is the total surface area of the body (Fig. 1). We shall restrict ourselves to regimes
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Fig. 1. Elastoplastic flow over a blunt body.

without jet attachment. The influence of initial stresses and associated mass on the resultant forces is neglected
[11, 12].

We partition the surface S into elements and approximate them by the surface of one of the canonical forms
(a sphere, a cone, or a cylinder). The contact stress vector Σ on the wetted element of the body surface is defined,
according to the local interaction model [8] (supported theoretically in [9] and experimentally in [11, 12]) by the
sum of contributions of the hydrodynamic and strength terms:

S+: Σ = τSnτ − σnn, σn = Cxρ0V
2/2 + bτd, S−: Σ = 0.

Here τS = const 6 τd is the plastic friction law; nτ is a unit vector in the sliding direction (in the approximation
considered, nτ = (−1, 0, 0); and σn > 0 is the contact pressure. The coefficients Cx and b can be varied and specified
from experiments or from solutions of model flow problems. Thus, on the flat segments of the lateral surface Sf ,
where δ � 1, we assume [9]

Cx(Sf ) = Cfδ
2ε2, Cf = ln (µ/τd) + 2.55, b = bf = ln (4µ/τd)− 1.

The quadratic law is valid to values Cx 6 0.2, and the formulas for Cf and bf were obtained by solving the problem
of a thin cone subject to the condition of εδ � (τd/µ)1/2 (εδ < 10−2). In the region εδ ∼ 10−1 we can assume
the value Cf = 2.9, fitted to the experiments of [12]. As a consequence of the approximate nature of the model,
physical condition of separation σn = 0 is violated since σn in this case is the average value on the surface element.

For 0 6 l 6 ln and small perturbations, the frontal surface S⊥ is entirely wetted and on this surface as on
a unified element, Cx = C⊥ and b = b⊥. For cones with opening semiangles 15–90◦, the coefficient Cx = 0.18–0.82
(subsonic velocities) is close to its hydrodynamic value [12] and the value of b depends weakly on the shape (changes
by only 8%) and is approximately 2/3 of the value of b calculated by the formula for the maximum normal stress
at the stagnation point of an elastoplastic flow over a sphere [10] (the exact formula for the case of a sphere and a
cylinder is given in [15]). The typical values are µ/τd = 102–103; therefore, bf = 5–8, b⊥ = 16–24 for δ > 0.1. For
the case of supersonic penetration into a porous medium, the pressure on the cone was found in [16].

The yield point τd as a parameter of the process is a factor of 1.5–2 higher than its static value [11, 12] and
ceases to depend on the loading rate at velocities over 1 m/sec for a number of geological media. The reasons for
the difference between τd and τS can be heating of the medium near the contour due to friction or forced heating
of the body up to melting (vaporization).

In the model, only one parameter — the separation angle β∗ is not determined; its influence will be studied
parametrically. In addition, since a number of assumptions are insufficiently justified, the values of Cf , bf , τd, and
τS should be refined in control experiments.

2. Mathematical Formulation of the Problem. We introduce the following dimensionless variables
and parameters:

æ =
c2

v2
x

, ξ =
∫
vx dt

L
, c2 =

2bfτd
ε2ρ0Cf

,

(4)

D =
ρCf

2πle
, ρ =

ρ0

ρ1
, j0 =

mL2

J
, τ =

τS
εbfτd

, A1 = πR2
0

DC⊥
ε2Cf

, A2 = πDR2
0

b⊥
bf

(J is the principal moment of inertia of the transverse rotation).
For the functions æ, η, and ω defined by (2) and (4), the equations of motion of the body reduce to an

autonomous system of integrodifferential equations resolved for ordinary derivatives, for which the Cauchy problem
is formulated:
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æ′ = 2æε2(A1 +A2æ + fæ − ωη), η′ = fη − ω, ω′ = j0fω,

æ = (æ, η, ω) = æ0, ξ = 0;
(5)

f = (fæ, fη, fω) = D

∫
S+

(τæ + βσ,−σ cosϕ,−σx cosϕ)Rdl dϕ,

fæ = D

1∫
0

ΘRdl, (f, fω) = D

1∫
0

(1, lc − l)ΦRdl,

Θ = ϕ0Θ1 + Θ2, Φ = 2aβϕ0 + Ψsgn a, 0 < l < 1,

Θ1 = 2(æτ + æβ + β3) + βa2, Θ2 = β|a|(4β − β∗)
√

1− q2H(1− q)2,
(6)

Ψ = [2æ + β2 + a2(2 + q2)/3− ββ∗]
√

1− q2H(1− q)2, q = β∗/a,

ϕ0 =
{
π, q sgn a > 1,
0, q sgn a 6 −1,

ϕ0 =
{
π − ϕ∗, a > 0, |q| < 1,
ϕ∗, a < 0, |q| < 1,

σ = æ + δ2, β∗ = β − β∗, ϕ∗ = arccos q.

Here H is a stepped function and the prime denotes differentiation with respect to ξ. In the expressions for the
resultant force (6) with the terms O(ε2) dropped, it is possible to perform integration over the angle ϕ subject to
condition (1), so that only ordinary integrals are retained. Nevertheless, the right sides of Eqs. (5) are nonlinear.

The solutions of Eq. (3) ϕ∗ = arccos (β∗/a) define the boundaries of separation zones that are symmetric
about the meridians ϕ = 0 and π and have extrema on these meridians. The formulas for the generalized distributed
loads Θ and Φ describe all cases of flow of an arbitrary parallel: flow without separation (ϕ0 = π) and complete
(ϕ0 = 0) or partial (ϕ0 6= 0, π) separation.

The unknowns functions æ, η, and ω depend on body shape and eight dimensionless parameters. The
quantity æ can be defined as the ratio of strength resistance to velocity head. During body motion, this ratio varies
in the range æ0 < æ < ∞; in this case, the solution of problem (5) asymptotically describes almost all stages of
the decelerated motion of the body. For æ � 1, inertia predominates. These values of æ correspond to the range
of considerable supersonic velocities, in which the interaction model (6) becomes unsuitable and the penetration
is accompanied by fracture of the thin body itself. For æ � 1, it is possible to ignore the influence of inertia in
calculation of the resultants. Therefore, we assume æ0 = O(1). The order of magnitude of æ is determined not only
by the velocity but also by the strength of the medium. In this case, the value æ0 = O(1) can be obtained for low
velocities, too. For a soil of moderate dynamic strength (τd = 5 · 106 Pa), the value æ ≈ 1 corresponds to a velocity
of a conical (15◦) impactor V ≈ 700 m/sec.

The Cauchy problem (5) and (6) was solved numerically using the Runge–Kutta method. The integrals
were calculated by the trapezoid method taking into account the complex analytical behavior of the integrands
(discontinuities, boundary-layer type regions). We restrict ourselves to specifying a body meridian in the form of
the parabola segment

R(l) = R0 + (1−R0)[β0l − (β0 − 1)l2],

β(l) = (1−R0)[β0 − 2(β0 − 1)l], 0 < l < 1.
(7)

The body has a disk bluntness of radius R0 with apex angle β0(1−R0). We fix the values ε = 0.065 and C⊥ = 0.82
and vary the parameters æ0, β0, β∗, D, τ , j, and lc.

The stability of the straight-line motion of the body was examined by calculations for the “frozen” axial
velocity æ = const. Mathematically, “freezing” is justified by the different asymptotic order of the right sides of
Eqs. (5): O(ε2) in the equation for æ and O(1) in the remaining equations, which implies that for thin bodies,
the lateral resistance exceeds the axial one. In practice, such motion is possible under application of an external
compensating following force.

The body was assumed to enter the half-space without a splash, which influences the position of the bifur-
cation points of the solution for finite perturbations.
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3. Dimensions of the Separation Zone and the Separation Criterion in the Small. We consider
bodies with a separation localized near the rear point l = 1 for β∗ = β1 = β(1). For the body shape (7), the
maximum length of the ∆ separation zone on the meridians ϕ = 0 (+ sign) or ϕ = π (− sign) is determined from
Eq. (3) subject to the condition of 0 6 ∆ 6 1:

∆ =
(b0 − 2)(1−R0) + β∗ ± (1− lc)ω ∓ η

2(b0 − 1)(1−R0)± ω
, |ω| < 2.

If both roots are outside the indicated interval, by analysis of the inequality δ∗ < 0 for the presence of a separation
zone, we find ∆ = 0 or 1. For β∗ 6 β1 and small perturbations, the separation zone is localized near the separation
boundary for symmetric flow l = l∗: β(l∗) = β∗.

The critical value of the position of the center of mass ls is found by stability analysis in the small [1] taking
into account the small asymmetric separation zones near a certain parallel l = l∗:

ls =
A0A2 −A2

1 + ζA1

ζA0
, Am = pm + l∗,mψ, ζ =

2le(R0)
ρCf

=
1
πD

,

D = D0
le(0)
le(R0)

, ψ =
æ + β2

∗
e0|β′(l∗)|

R(l∗), e0 =
{

2, β∗ = β1, l∗ = 1,
1, β∗ < β1, l∗ < 1,

pm = 2

l∗∫
0

lmR(l) dR(l), m = 0, 1, 2,
(8)

le =

1∫
0

R2(l) dl = R2
0 + 2R0(1−R0)

(b0
2
− b2

3

)
+ (1−R0)2

(b20
3
− b0b2

2
+
b22
5

)
.

For ε0 = 1 − R0 → 0, the asymptotics ls → 1 + ε0/ζ(1) + O(ε20) is valid: the values ls > 1 are on the left in the
neighborhood of the point R0 = 1. This agrees with the statement that a cylinder and, generally, bodies that are
asymptotically close to a cylinder exhibit absolute stability near the rear point [β′(1) = β′′(1) = 0] [13, 15]. The
degradation of the Lyapunov method is explained by the fact that the formation of small separation zones near the
rear points of such a body for R0 → 1 requires extremely small perturbations of η and ω, and for R0 = 1, arbitrarily
small perturbations lead to the appearance of asymmetric separation spots of finite area.

Calculations using formula (8) showed that the curves ls = ls(R0) are nonmonotonic: for R0 > 0.85 there
is a maximum, after which the curves approach the asymptotics indicated above (Fig. 2). It should be noted that
the values D0 = 0.11, 0.26, and 0.44 correspond to the penetration of impactors from a tungsten alloy, steel, and
titanium into a clay medium (ρ0 = 1.65 g/cm3). The calculations show that the larger D0 (the lighter the body),
the higher the stability margin (Fig. 2).

It can be proved that for bodies with an increasing dependence R(l), the stability margin increases with
increase in the relative density ρ for both continuous and separated flows.

4. Stability in the Large. As in the case of pointed bodies [14], a numerical experiment shows that the
solution bifurcates on a certain surface

li = li(æ0, b0, . . .), la(æ, b0, . . .) 6 li 6 ls(æ, b0, . . .)

in the phase space of parameters: the perturbations damp for lc < li and grow for lc > li (exponentially if the
perturbations are small). For lc < la (la is the absolute critical value), the perturbations damp, and for lc > ls,
they grow under any initial conditions. As perturbations decrease, the value of li tends from below to the limit ls,
according to the stability criterion in the small (8). For variation in R0 on the segment 0–0.7 with a step 0.1 and
fixed values D0 = 0.115, b0 = 2, β∗ = 0, and j = 5.5, we have li = 0.61256, 0.59913, 0.58789, 0.578 02, 0.56789,
0.55513, 0.53742, and 0.52693, respectively.

Because of the weak convergence of the solution to the limit in the neighborhood of the bifurcation points,
we needed to check the calculation accuracy and to perform the calculations up to the value ξ ≈ 2000 to determine
these points by the successive-approximation method. For R0 > 0.7, it was not possible to find the value of la
because of the weak damping (growth) of the solution as ξ →∞ in the neighborhood of the required point. Below
we give some intermediate critical values of li for a pointed body under various initial conditions:
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Fig. 2. Critical positions of the center of mass versus bluntness radius for æ = 2 and D0 = 0.01
(1), 0.2 (2), and 0.5 (3).
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Fig. 3. Effect of computational instability of the solution near the bifurcation point lc = li (lc = 0.58795,
æ0 = 1, ω0 = −η0 = 0.4, R0 = 0.4, D0 = 0.115, and τ = 1.1): Nl = 400 (1), 800 (2), and 1600 (3).

li = 0.61256 at γ0 = (−0.5; 0.5), li = 0.66955 at γ0 = (−0.1; 0.1),

li = 0.69335 at γ0 = (−0.01; 0.01) [γ0 = (η0, ω0)].

The bifurcation interval of the solution ls − la increases in the presence of a bluntness, for example: ls − la ≈ 0.092
for R0 = 0 and ls − la ≈ 0.235 for R0 = 0.5. If the point lc is located even at a small distance on the right of the
critical point li, stabilization occurs rather rapidly: γ,∆ → γ∗,∆∗. The limiting cycle is always constant motion
on a circle of asymptotically large radius R∗ = 1/(ε2ω∗) as in the case of pointed bodies. As lc increases, the
amplitudes γ∗ grow and the separation zone is immediately extended to the entire length of the body of chosen
shape.

It was established that the solution is instable for values of lc close (on the right) to li: the perturbation
in this case was the discreteness of the calculations although they were performed with very high accuracy. As an
example, we consider the results of calculations taking into account deceleration (Fig. 3). It is evident that the
curves of ω(ξ) obtained by the trapezoid method differ considerably for different numbers of partition points Nl on
the integration segment 0 6 l 6 1. The number of partition points on unit length of the path during integration
using the Runge–Kutta method was fixed: nξ = 15. Curve 1 in Fig. 3 corresponds to the value Nl = 400. As Nl

increases, the curves are shifted from it in different directions, which indicates a manifestation of computational
instability rather than insufficient accuracy of the calculations. It should be noted that a small change in the
parameters (lc = 0.59 or τ = 1.3) leads to stabilization: all three curves coincide.
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Fig. 4. Paths of light (a) and massive (b) impactors for R0 = 0.4, β0 = 2, β∗ = 0, æ0 = 1,
ω0 = −η0 = 0.4, and τ = 0.5: (a) D0 = 0.3 and lc = 0.58 (1), 0.62 (2), and 0.66 (3); (b) D0 = 0.06
and lc = 0.55 (1), 0.59 (2), and 0.63 (3).

5. Effect of Determining Parameters on the Path of Motion with Deceleration. During solution
of the problem (5) and (6) for æ 6= const, we found the coordinates of the center of mass of the body X and Y

beginning with the entry into the half-space X > 0 and the path X = X(Y ). An analysis of the results shows
that the plastic friction τ has a significant effect on the path length and, as noted above, facilitates inhibition
of instability. With a change in the position of the center of mass lc (considered in the present section as a free
parameter independent of body shape and other parameters), the motion path changes qualitatively (and several
times). For very high velocities, the path length and curvature are in direct proportion to the quantity D, which
is determined mainly by the density ratio. Figure 4a shows curves whose shape is close to some paths of more
massive (D0 = 0.115) pointed impactors [14]. The straight-line path (curve 1) corresponds to stable motion and
the other two paths (curves 2 and 3) have an initial segment shaped like an arc of a circle, followed by a segment of
straight-line motion, in agreement with the theoretical conclusion that the stability margin increases as the velocity
decreases. If the velocity increases by a factor of two, the straight-line segment disappears, the paths take a shape
close to an arc of a circle, in agreement with the results of analysis for “frozen” axial velocity.

If the separation is preserved near the rear points of a body of a different shape with a nonzero separation
angle [β0 = 1.5 and β∗ = b(1) = 0.3] and R0 = 0.4, D0 = 0.06, and lc = 0.52; 0.55; 0.58, then the path shapes are
close to the shape of the curves presented in Fig. 4a.

In the case of a very massive impactor (D0 = 0.06) made from, e.g., a tungsten alloy and penetrating into
volcanic rock of low density (pumice), path elongation in stable motion is accompanied by new nonlinear effects:
weakly curved motion is ended by a sharp rotation of the body because of large angles of attack (Fig. 4b). This
is due to the occurrence of a secondary maximum of the angular velocity of rotation ω on the curve of ω(ξ). This
effect was not observed in the case of pointed bodies [14] and can be explained by a considerable broadening of the
bifurcation zone ls − la for blunt bodies and a change in the nature of the dependence of the path parameters γ∗
and ∆∗ on the axial velocity.

For R0 = 0.2 and D0 = 0.115 (Fig. 5), the elongation path effect due to a decrease in the head resistance is
more significant than the deceleration effect due to plastic friction. A factor of two increase in the initial velocity
(æ0 = 0.25) (Fig. 6a) and an increase in values of lc (Fig. 6b) lead to an increase in the path curvature due to
growth in the instability margin lc − li (the higher the penetration velocity, the smaller the value of li, as a rule).
An increase in the margin only due to a change in lc (the Fig. 6b), unlike in the case of increasing entry velocity,
leads to a sharp decrease in the path length because of rapid growth of perturbations.

The shape of the curves in Fig. 4a does not change if the separation angle is not equal to zero (β∗ = 0.5)
and the center of mass is slightly shifted to the body nose (lc = 0.55, 0.6, and 0.65). In this case, l = 7/12,
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Fig. 5. Paths of a body of moderate density (D0 = 0.115)
for R0 = 0.2, β0 = 2, β∗ = 0, æ0 = 1, ω0 = −η0 = 0.4,
and τ = 1: lc = 0.52 (1), 0.6 (2), and 0.68 (3).
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Fig. 6. Change in the impactor paths with increase in the initial velocity (a) and instability mar-
gin (b): (a) lc = 0.52 (1), 0.6 (2), and 0.68 (3); (b) lc = 0.69 (1), 0.71 (2), and 0.73 (3).

which corresponds to the position of the separation point for symmetric flow. When the separation angle varies
from β∗ = 0 (Fig. 5) to β∗ = 0.8, the paths are almost identical to the curves in Fig. 6a, as in the case of a factor of
two increase in the entry velocity. This indicates that variation of the separation parameter (and, hence the choice
of a separation model) has little effect on the main qualitative regularities of motion and the classification of paths
remains unchanged.

6. Blunt Cone. A cone (β0 = 1 and β∗ = 0) and a cylinder and their combinations with curved-meridian
elements are degenerate body shapes in relation to separation: according to the proposed model, finite separation
spots appear instantaneously. In the neighborhood −lc < ±ω−1(1±η) < 1− lc, the cone first moves in a continuous
flow regime and its subsequent motion is determined by the critical position of the center of mass lg [13].
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The calculated paths of a cone for R0 = 0.4, β0 = 1; b∗ = 0, D0 = 0.3 and 0.06, æ0 = 1, −0.4, and 0.4;
and the values of lc = 0.58, 0.61, 0.64, 0.70, 0.74, and 0.78 correspond qualitatively to those given in Fig. 4b and
Fig. 6b. The difference lies in the fact that in this case, the values of the angle of attack and rotation velocity before
complete stop are larger. In addition, there are no straight-line path segments in the region of instability: the path
curvature increases and the paths become shorter than those in the case of a parabolic body shape.

We note that for a cone of uniform density, lg = 0.6345 and if it is large enough, its motion is unstable.
Cones are frequently used in penetration experiments; therefore, in comparing the penetrations of axisymmetric
and three-dimensional configurations, it is necessary that the stability criteria be equivalent.

7. Calculation of Force Characteristics of Dynamic Bending. We consider the problem of the
bending of a thin elastic rod of nonuniform length with traction-free ends under lateral quasistatic loading due
to interaction with a medium during high-velocity penetration. The principal vector and the principal moment
of these loads are not equal to zero; therefore, we decompose the motion of the elastic body into components:
rid body motion and dynamic bending. Accordingly, the dimensionless external lateral load q0 is represented as a
superposition of an equivalent non-self-balanced load that does not cause bending and a self-balanced residue q(l, ξ):

q0(l, ξ) = m(l)[P0/m0 + P1(l − lc)/J ] + q(l, ξ) ≡ æΦ(l, ξ)R(l),

Pj(ξ) =

1∫
0

q0(l, ξ)(l − lc)j dl, m0 =

1∫
0

m(l) dl.

Here m(l) = πρ(l)r2(l) is the mass per unit length and Pj is the resultant of the forces. The shear force Q and the
bending moment M are determined by solving the boundary-value problem

dQ

dl
= q(l, ξ),

d2M

dl2
= q(l, ξ), Q = 0, M = 0, l = 0, 1

with the normalization

q =
qy
B
, Q =

Qy

BL
, M =

My

BL2
, B = bfτdrmax

(the subscript y denotes dimensional quantities). The maximum tensile stress σx,max, its dimensionless analog
σmax in a certain cross-section of the rod, and the strength margin n are defined by the well-known formulas

σmax =
M

R3
=
πε2σx,max

4bfτd
, n =

Σ∗

Σ
, Σ = max {σmax(l)}, 0 < l < 1, (9)

where Σ∗ is the dimensionless tensile strength, which is related to its dimensional analog σ∗ by a formula similar
to the expression for σmax in (9).

To ensure a specified position of the center of mass by selecting the mass per unit length m(l), we assume
that the impactor consists of two materials with density ρ = ρ′ for 0 < l < l1 and ρ = ρ′′ for l1 < l < 1; γ = ρ′/ρ′′.
Then,

lc =
I1
I0
, Ik =

1∫
0

lkm(l) dl, J =

1∫
0

(l − lc)2m(l) dl. (10)

The ratio γ and the moment of inertia J are found by choosing a value of l1 for a certain specified value of lc from
Eq. (10), and then the parameter j0 is calculated by one of formulas (4).

In the case of a parabolic body shape (7), the calculation formulas become

γ =
lc[F1(1)− F1(l1)] + F2(l1)− F2(1)

F2(l1)− lcF1(l1)
,

j0 =
(γ − 1)F1(l1) + F1(1)

(γ − 1)[l2cF1(l1)− 2lcF2(l1) + F3(l1)] + l2cF1(1)− 2lcF2(1) + F3(1)
,

Fk = lk
(R2

0

k
+

2R0R1l

k + 1
+

(R2
1 − 2R0R2)l2

k + 2
− 2R1R2l

3

k + 3
+
R2

2l
4

k + 4

)
,

R1 = β0(1−R0), R2 = (β0 − 1)(1−R0), k = 1, 2, 3.
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TABLE 1

R0 l0 lc γ j n lmax Smax ∆max

0.61 2.361 21.37 0.92 0.001 3.0 0.455
0 0.65 0.62 2.108 21.16 0.30 0.038 20.0 1.0

0.63 1.887 21.04 0.26 0.001 20.0 1.0

0.59 2.317 18.57 1.30 0.201 2.6 0.468
0.1 0.60 0.61 1.889 18.47 0.40 0.190 20.0 1.0

0.63 1.541 18.65 0.33 0.190 20.0 1.0

0.58 2.053 17.11 1.69 0.276 2.93 0.502
0.2 0.60 0.60 1.686 17.05 0.51 0.274 20.0 1.0

0.62 1.386 17.23 0.45 0.273 20.0 1.0

0.57 1.819 15.45 2.44 0.334 4.4 0.413
0.3 0.55 0.59 1.512 15.79 0.78 0.300 20.0 1.0

0.61 1.253 14.52 0.84 0.268 20.0 1.0

0.57 1.483 14.74 3.17 0.398 5.9 0.656
0.4 0.55 0.59 1.238 15.14 1.12 0.338 20.0 1.0

0.61 1.030 15.31 1.10 0.355 20.0 1.0

Note. β0 = 2, β∗ = 0, ω0 = 0.4.

TABLE 2

R0 l0 lc γ j n lmax Smax ∆max

0.65 1.515 21.06 3.58 0.044 2.53 0.130
0 0.65 0.66 1.358 21.21 3.50 0.001 3.13 0.141

0.67 1.217 21.45 0.21 0.001 20.0 1.0

0.66 1.124 19.80 3.88 0.310 3.8 0.162
0.1 0.70 0.67 1.009 19.95 0.31 0.190 20.0 1.0

0.68 0.906 20.18 0.34 0.178 20.0 1.0

0.66 0.926 18.26 4.54 0.415 3.27 0.175
0.2 0.65 0.67 0.835 18.60 0.58 0.243 20.0 1.0

0.68 0.751 19.03 0.74 0.218 20.0 1.0

0.66 0.766 16.84 5.34 0.480 2.67 0.185
0.3 0.70 0.67 0.693 17.09 5.43 0.478 4.07 0.2

0.68 0.627 17.40 0.96 0.495 20.0 1.0

0.68 0.526 16.39 6.52 0.538 3.73 0.214
0.4 0.70 0.69 0.477 16.80 0.25 0.465 20.0 1.0

0.70 0.431 17.28 0.19 0.463 20.0 1.0

0.70 0.366 16.49 7.90 0.628 6.4 0.2
0.5 0.70 0.71 0.331 17.08 0.106 0.473 20.0 1.0

0.72 0.297 17.77 0.087 0.475 20.0 1.0

Note. The calculations were performed for β0 = 2, β∗ = 0, and ω0 = 0.1.

An analysis shows that the dependence σmax(l) is continuous at the point l = 0 (i.e., remains finite in the case of a
pointed body, too) but it has an absolute maximum at this point; nevertheless, fracture begins from the body nose.
Thus, the body nose should be blunted to ensure higher strength.

The influence of the bluntness radius R0 on the magnitude of the safety margin, the position of the point of
fracture onset and the time of attainment of the dangerous condition is studied for a body of parabolic shape (7)
by varying the position of the center of mass and the bluntness radius for the following parameter values (the axial
velocity is frozen): β0 = 2, τ = 1, D0 = 0.115, β∗ = 0, bf = 7, τd = 5 MPa, σ∗ = 1 GPa, and æ = 2.

The presence of a disk-shaped bluntness does not imply flow separation immediately behind the disk: sep-
aration occurs when a certain limiting velocity is attained. This is prevented by two factors: the formation of a
stagnation zone ahead of the disk, which “is washed off” and becomes narrower as the velocity of motion increases,
and the presence of a nonzero (maximum) slope of the lateral surface of the body immediately behind the disk.

Tables 1 and 2 give the safety margin n, the distance from the body nose lmax, and the length of the
path ξmax for which the maximum σmax(l) is reached, and the length of the separation zone ∆max at the moment
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Fig. 7. Lateral loading q, shear force Q, bending moment M , and maximum cross-sectional stress σmax versus
immersion depth l for ξ = 0.733 (a), 1 (b), 6 (c), and 7 (d); r0 = 0.4, lc = 0.57, ω0 = 0.4, and æ = 2:

of attainment of the maximum. For each value of the bluntness radius R0, calculations were performed for three
values of the distance lc, which corresponded to a “stable” (nearly straight-line) path and “slightly unstable” and
“highly unstable” paths, using two values of initial perturbations: ω0 = −η0 = 0.1 and ω0 = −η0 = 0.4. From
Tables 1 and 2, it follows that even in the case of a small bluntness (R0 = 0.1), the dangerous point l = lmax is
shifted from the nose to center of the body (this shift is maximal for “stable” paths). In this case, the safety margin
can increase by a factor of 1.5. The indicated features are also observed when the bluntness radius increases to the
value R0 = 0.9; in this case, the point l = lmax is near the center of the body. The corresponding immersion depth
ξmax also depends substantially on the parameters lc, R0, and ω0. It should be noted that the minimum safety
margin is reached not at the moment of entry but when the body is completely immersed in the medium: in the
case of nearly straight-line paths, for ξmax ≈ 2.5–6.0 and in the case of curved “unstable” paths, at the moment the
body enters a stationary path for which the calculated perturbation is maximal.

The safety margin n grows with increase in bluntness radius, other things being equal. For 0 6 R0 6 0.1,
the increment in n is nearly linear and changes considerably, and then, for R0 > 0.1, it does not decrease although
the comparison can be only indirect because it is made for different curves of growth or damping of perturbations
of ω and η.

An analysis of data on the dimension of the separation zone ∆max shows that dangerous stresses occur, as
a rule, for the maximum dimension of the zone, which indirectly correlates with the maxima of ω and η.

Figure 7 shows distributions of the lateral bending load q, the shear force Q, the bending moment M , and
the maximum cross-sectional tensile stress σmax for various values of ξ. The jump for l = l1 = 0.57 is due to a
jump of inertial forces (responsible for rigid body motion) subtracted from the complete lateral loading, because of
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a density jump in this cross section. This is followed by a sudden (typical of a boundary layer) change in this load
at the beginning of the separation zone.

Conclusions. From the results of the present study of the stability of straight-line motion of a thin blunt
body, it follows that large perturbations reduce the stability margin in the small to a greater extent in this case than
in the case of pointed bodies. The studies showed the possibility of occurrence of curved paths that are qualitatively
close to specified ones with considerably different separation parameters: straight-line, curved on the initial segment
and then straight-line (in this case, the body can move away, move parallel to or approach the target surface, so
that it can return to this surface or stop inside the target), curved, and close to an arc of a circle. Thus, the main
characteristics of the examined motion depend weakly on the choice of a separation criterion, which needs to be
refined. The distribution of the dynamic loads acting on a thin body from the medium is similar to the distribution
in the boundary layer.

This work was supported by the Russian Foundation for Basic Research (Grant No. 02-01-00259).
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